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Anomalous roughening of wood fractured surfaces

Stéphane Morel,1 Jean Schmittbuhl,2 Juan M. López,3 and Gérard Valentin1
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Scaling properties of wood fractured surfaces are obtained from samples of three different sizes. Two
different woods are studied: Norway spruce and Maritime pine. Fracture surfaces are shown to display an
anomalous dynamic scaling of the crack roughness. This anomalous scaling behavior involves the existence of
two different and independent roughness exponents. We determine the local roughness exponentsz loc to be
0.87 for spruce and 0.88 for pine. These results are consistent with the conjecture of a universal local roughness
exponent. The global roughness exponent is different for both woods,z51.60 for spruce andz51.35 for pine.
We argue that the global roughness exponentz is a good index for material characterization.
@S1063-651X~98!00512-1#

PACS number~s!: 62.20.Mk, 46.30.Nz, 05.40.1j, 61.43.2j
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I. INTRODUCTION

Since the pioneering work of Ref.@1#, it has been firmly
established that the topography of fracture surfaces exh
remarkable scaling properties. A fracture surfacez(x,y) is
statistically invariant under an anisotropic scaling transf
mation:

~x,y,z!→~lx,ly,lzz!, ~1!

wherez is theroughness exponent. Experimental results ob
tained on various materials~steels@1#, glass@2#, rocks@3,4#,
ceramics@5,6#, metallic alloys@6–8#, and aluminum alloys
@9,10#!, both fragile and ductile, have shown that the roug
ness exponentz is found between 0.7 and 0.9~see Ref.@11#
for a recent review!. The robustness of the results seems
support the idea suggested in Ref.@10# that z.0.8 might be
a universal value of the roughness exponent, i.e., indep
dent of the material properties. This conjecture implies t
the fracture toughness is not correlated to the roughness
ponent z. However, the morphology of fracture surfac
seems to be affected by material properties.

It was suggested by Bouchaudet al. @12# that models of
front lines propagating through randomly distributed impu
ties @13–15# might be relevant to understand the morpholo
of the fracture surfaces@16,17#. The development of the frac
ture roughness was described as a Family-Vicsek sca
@18,3#. However, in a very recent experimental study@19#, it
has been found that the surface of a brittle fracture in
granite block exhibited anomalous dynamic scaling prop
ties akin to what occurs in some models of nonequilibriu
kinetic roughening@20–24#.

The anomalous scaling is defined as follows. The dev
opment of the fluctuations of the heighth(x,t) with time is
characterized by the root mean squarew( l ,t) at timet over a
window sizel along thex axis ~perpendicular to the propa
gation direction!

w~ l ,t !5K 1

l (i 51

l

h~xi ,t !22S 1
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PRE 581063-651X/98/58~6!/6999~7!/$15.00
its

-

-

o

n-
t
x-

-

g

a
r-

l-

where the bracketŝ•••& j denote an average over the win
dow positionj. The roughnessw( l ,t) is expected to scale in
the case of anomalous scaling as@24#

w~ l ,t !;H tb
* l z loc if l !t1/z

tz/z if l @t1/z,
~3!

where the exponentb* 5(z2z loc)/z is an anomalous time
exponent. This anomalous dynamic scaling involves two d
ferent and independent roughness exponents: the l
roughness exponentz loc , which describes the scaling whe
one considers windows smaller than the system size, and
global exponentz for scaling involving the system size@24#.
The local roughness exponentz loc is actually within reach of
the methods currently used for experiment analyses. The
bal exponentz is more difficult to extract from a classica
roughness measurement. Both exponents have to be t
into account for a complete description of the scaling beh
ior of the surface. According to Eq.~3!, the correlation
lengthj(t);t1/z corresponds to a characteristic length belo
which the surface appears as self-affine with the local ex
nentz loc .

In Ref. @19#, global and local roughness exponents,z
51.2 andz loc50.79, respectively, have been measured. T
latter study was performed on a mechanically isotropic m
terial ~granite!. However, many materials have anisotrop
mechanical properties like wood, reinforced concrete, a
most composite materials. Anisotropic properties result g
erally from structural reinforcements along specific dire
tions. It is of great interest to understand how fractures
such materials are influenced by the anisotropic texture.

In this study, we determine the complete scaling behav
of the fracture roughness resulting from stable crack pro
gation in wood samples of different sizes. For two differe
woods~Maritime pine and Norway spruce!, we show that the
local fluctuations of crack surfaces exhibit anomalous
namic scaling properties. The global roughness exponen
different for both woods. Local roughness exponents
identical for both woods, and support the conjecture o
universal local roughness exponent for brittle fracture s
6999 © 1998 The American Physical Society
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7000 PRE 58MOREL, SCHMITTBUHL, LÓPEZ, AND VALENTIN
faces. The main consequence of this anomalous scalin
that the magnitude of the surface fluctuations over region
not just a function of the region size but also of the syst
size.

The paper is organized as follows. In Sec. II, we descr
experimental setups for crack propagation and fracture
face measurement. Section III is devoted to the anoma
dynamic scaling behavior. In Sec. IV, we study the roug
ness magnitude as function of the system size. Finally,
discuss implications for fracture process in Sec. V.

II. EXPERIMENT

Wood is a natural material which displays a structu
anisotropy resulting from the presence of running cells in
radial direction. Two commercially wood species have be
tested: Maritime pine~Pinus pinaster Ait! and Norway
spruce ~Picea abies L.!. Pine specimens have an avera
oven dry specific weight (r) of 560 kg/m3, and growth rings
are approximately 4 mm wide. Typical values for spru
specimens are (r)5390 kg/m3, and growth rings of 2–5
mm wide. Moisture content of all specimens was measu
between 11% and 13%.

Crack surfaces are obtained from a modified tape
double cantilever beam specimens. A fracture was initia
from a straight notch machined with a band saw~thickness 2
mm!, and prolonged a few millimeters with a razor bla
~thickness 0.2 mm!. Fracture is obtained through uniaxi
tension with a constant opening rate~Fig. 1!. The tapered
shape of the specimens allows us to obtain a mode I st
crack growth~see Ref.@25# for details! which induces a con-
stant crack speed. The crack speed was around 0.6 m
~from 0.3 mm/s for small specimens to 1 mm/s for lar
specimens!. Crack surfaces were generated along an aver
radial-longitudinal plane by aligning the growth rings pe
pendicular to the straight notch. In order to obtain an evo
tion of the amplitude of the roughness as a function of
system size, three geometrically similar specimens of su
ciently different sizes have been fractured. We used sam
of sizeL equal to 11.25, 30, and 60 mm~see Fig. 1!.

Anatomical characteristics of wood introduce typic

FIG. 1. Modified tapered double cantilever beam~TDCB! speci-
men subjected to mode I crack propagation. The crack plan
perpendicular to the tensile axis which corresponds to the rad
longitudinal plane of wood~the longitudinal direction being the
direction of crack propagation!. Dimensions are given in mm.
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scales which might appear as cutoffs for scale invarianc
Most tetragonal tracheid cells in pine and spruce are ab
25 mm wide. During loading cell walls break revealing U
shaped profiles with rugged edges because of the rectan
shape of the tracheid section. Thickness of cell walls va
from 2 to 10 mm. This facies of fracture surface is chara
teristic of a local brittle fracture process.

Topographies of the crack surfaces were recorded wi
mechanical profiler along regular grids. Grid axes are alo
thex direction which is parallel to the initial notch, and alon
they direction which is the crack propagation direction~Fig.
1!. The step of sampling in thex direction is adjusted to the
minimum cell widthDx525 mm, and to the cell length in
the y direction,Dy52.5 mm. Profiles along thex axis were
sampled with 2050 points for specimens of widthL560 mm,
1030 points for specimens of widthL530 mm, and 360
points for specimens of widthL511.25 mm. For each map
the first profile (y50) is sampled in the immediate vicinit
of the initial straight notch, and has a zero roughness. As
distancey to the notch increases, the roughness develops
to 3 mm. The vertical resolution is estimated from the heig
differences between two successive sampling along the s
line. Its magnitude is about 3mm. Horizontal resolutions
along thex andy axes are about 5mm. In the case of pine
an additional specimen size was tested:L522.50 mm with
800 points, but only profiles far from the notch have be
recorded. Table I lists parameters of the studied samples

III. ANOMALOUS DYNAMIC SCALING

As mentioned above, fractures of all specimens were
tained at a constant crack speed. Subsequently, we assum
linear relationship between they position of the profiles and
the crack propagation timet. Height profiles are considere
as descriptions of the advancing crack fronth(x,t). A com-
plete spatiotemporal evolution of the crack front can thus
produced from roughness maps.

In Fig. 2, we present the development of the roughn
w( l ,t) versus timet on a log-log plot for different window
sizesl in the case of a spruce specimen (s60-1) which is 60
mm wide. The upper line is a fit of the roughness growth
the largest window size (l 513.975 mm!. The slope of this fit
provides an estimate of the ratio of the global roughn
exponent and the dynamical exponent:z/z'0.26. The fit is
computed for times between timetmin and timetmax. Before
time tmin the crack speed is not constant. After timetmax, the
roughness has saturated because of the reach of the sy
size.

The lower line is a fit of the roughness measured fo
small window size (l 50.175 mm!. It appears thatw( l ,t)
increases like a power law as a function of the crack pro
gation timet even for small window sizes. The slope of th
fit is 0.14, significantly larger than zero, and gives an e
mate of theb* exponent. This unconventional dependen
on time is an illustration of the anomalous scaling, and d
fers from the Family-Vicsek scaling, where the roughnes
expected to be time independent for small window sizes

These two regimes are in good agreement with
anomalous scaling proposed in Eq.~3!. A similar behavior
has been observed for all specimens.
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TABLE I. Description of analyzed specimens. Local roughness exponents are calculated using the root mean square me
max-min difference method, the power spectrum, and the averaged wavelet coefficient analysis. Values in brackets are corrected f
due to measurement and analysis biases.

Specimen L No. of Root mean Power Wavelet zmax

Species label ~mm! profiles square spectrum max-min analysis z z ~mm!

spruce s60-1 60 49 0.84~0.95! 0.89 ~0.86! 0.89 ~0.90! 1.00 ~0.96! 1.60 5.90 3.90
s60-2 60 49 0.81~0.88! 0.85 ~0.82! 0.89 ~0.90! 0.91 ~0.87! 1.55 2.40 4.30
s60-3 60 43 0.84~0.95! 0.95 ~0.93! 0.87 ~0.87! 0.99 ~0.95! 1.60 5.60 not sat.
s30-1 30 48 0.78~0.84! 0.83 ~0.80! 0.83 ~0.79! 0.92 ~0.87! 1.55 3.50 4.10

s3022 30 47 0.79~0.85! 0.84 ~0.81! 0.82 ~0.79! 0.89 ~0.84! 1.60 2.00 4.20
s11-1 11.25 22 0.73~0.80! 0.84 ~0.85! 0.83 ~0.84! 0.91 ~0.84! 1.55 2.50 1.35
s11-2 11.25 25 0.77~0.85! 0.84 ~0.85! 0.83 ~0.84! 0.98 ~0.91! 1.60 2.60 1.45
s11-3 11.25 26 0.79~0.88! 0.88 ~0.93! 0.84 ~0.85! 0.95 ~0.88! 1.55 2.60 1.40

spruce 0.8860.05 0.8660.06 0.8560.07 0.8960.09 1.6060.10

pine p60-1 60 45 0.84~0.95! 0.91 ~0.88! 0.90 ~0.93! 0.97 ~0.93! 1.30 1.90 7.30
p60-2 60 46 0.81~0.88! 0.86 ~0.83! 0.88 ~0.88! 0.90 ~0.86! 1.35 2.30 not sat.
p30-1 30 21 0.84~0.95! 0.87 ~0.85! 0.88 ~0.88! 0.99 ~0.95! 1.35 2.20 3.85
p30-2 30 30 0.80~0.87! 0.81 ~0.79! 0.87 ~0.87! 0.99 ~0.95! 1.30 4.30 not sat.
p30-3 30 31 0.85~0.95! 0.83 ~0.80! 0.90 ~0.95! 0.97 ~0.93! 1.40 2.60 3.80
p30-4 30 31 0.83~0.92! 0.88 ~0.88! 0.89 ~0.90! 1.01 ~0.96! 1.35 3.90 not sat.
p11-1 11.25 26 0.75~0.83! 0.86 ~0.88! 0.83 ~0.83! 1.03 ~0.96! 1.35 3.20 1.40
p11-2 11.25 27 0.75~0.83! 0.86 ~0.89! 0.83 ~0.83! 0.98 ~0.91! 1.40 1.80 1.80
p11-3 11.25 28 0.75~0.83! 0.82 ~0.79! 0.84 ~0.84! 0.97 ~0.90! 1.30 2.30 not sat.

pine p22-1 22.50 0.81~0.89! 0.84 ~0.83! 0.85 ~0.83! 0.99 ~0.94! 3.00
p22-2 22.50 0.81~0.89! 0.86 ~0.87! 0.85 ~0.83! 0.94 ~0.88! 2.70

pine 0.8960.05 0.8460.07 0.8760.05 0.9260.08 1.3560.10
nc
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A. Local roughness exponent

The local roughness exponentz loc is determined using
four methods: the root mean square and max-min differe
variable bandwidth methods@3,28#, the power spectrum

FIG. 2. Roughness~rms! w( l ,t) vs time for a spruce specime
60 mm wide~s60-1! calculated over windowsl of size ranging from
l 50.175 to 13.975 mm with a size stepD l 50.100 mm. The con-
tinuous line~a! corresponds to the fit of the roughness betweentmin

and tmax, w(l,t);tb* , for a small window sizel 50.175 mm.b*
50.14 is obtained. The continuous line~b! is the fit of data for a
large window sizel 513.975 mm. Its slope 0.26 corresponds toz/z.
e

method, and the averaged wavelet coefficient method@27#.
Local roughness exponentsz loc were determined on profile
located far from the notch, i.e., at long times. Results
specimens60-1 are used as illustrations. Complete resu
for all specimens are provided in Table I.

In the root mean square method, the roughnessw over a
window l is expected from Eq.~2! to scale at long enough
time as

w~ l ,t@ l 1/z!; l z loc. ~4!

From Fig. 3, the local roughness exponent isz loc50.84 in the
case of specimens60-1.

The max-min method consists of the computation
hmax(r), which is defined as the difference between the ma
mum and the minimum heightsh within this window, aver-
aged over all possible originsx of the window@26#: hmax(r)
5^Max$h(r 8)%x,r 8,x1r2Min$h(r 8)%x,r 8,x1r&x . For a
self-affine profile,hmax is expected to scale as

hmax~r !;r z loc, ~5!

where r is the width of the window along thex axis. For
specimens60-1, we measured a local roughness expon
z loc50.89.

The third method is a calculation of the power spectru
i.e., the Fourier transform of the autocorrelation functi
^h(x1Dx)h(x)&. The power spectrum scales, for a se
affine profile, as@26#
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S~k!;k2~2z loc11!, ~6!

wherek is the wave factor. In Fig. 4, we show a log-log pl
of S(k) versusk for specimens60-1. S(k) decays with a
power lawk22.78 which is consistent withz loc50.89.

The last method used in this study is the averaged wav
coefficient method@27#. This method consists of the averag
of the wavelet transform of the profile over the translati
factorb. The averaged wavelet coefficientW@h#(a) scales as

W@h#~a!;a~1/2!1z loc, ~7!

wherea is the scale factor.
The estimates of the local roughness exponents obta

with these four methods for all specimens are given in Ta
I. As shown in Table I, the values of the local roughne
exponentz loc calculated by the root mean square method,
max-min method, and the power spectrum method decre
with the system sizeL. Only values obtained from the wave
let analysis seem independent of the system size. In the

FIG. 3. Roughness~rms! w( l ) vs l for the profile at the saturate
time t@jmax

z ~specimens60-1). The straight line corresponds to th
power laww( l ); l z loc, and gives a determination of the local roug
ness exponentz loc50.84.

FIG. 4. Power spectrum at timetsat in the case ofs60-1 speci-
men. The straight line has a slope22.78 which is consistent with a
power lawk2(2z loc11) and a local roughness exponentz loc50.89.
let
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lowing, we show that this deviation is due to measurem
and analysis biases, and can be corrected.

The reliability of the determination of self-affine expo
nents has already been studied@27,28#. It has been shown
that several artifacts may introduce systematic errors for
estimation of the local roughness exponent. Two types
biases have to be distinghished: those which happen du
the geometric measurement of the object, and those w
are relative to the method of signal analysis.

In our study, profiles are recorded with a needle mov
along crack surfaces. For a similar type of measurem
@4,28#, it has been shown that the shape and volume of
needle can induce a geometric filter. When the tip of
needle is a half-sphere, the needle follows hills more c
rectly than sharp holes. Subsequently the exactness of
measured height is a function of the surroundings. It h
been found that an increase of the radius of the needle
induces an increase of the measured roughness exponen~see
Ref. @28# for more details!.

In the case of biases relative to the analysis method
has been found that the accuracy of the different method
sensitive to two parameters: the size of the system~number
of recorded points! and the roughness exponent. In our stud
the system size strongly evolves from small to large spe
mens: 360 to 2050 points. In Ref.@28#, tests on synthetic
profiles generated with a self-affine exponent between
and 0.9 show that the three methods underestimate the
affine exponent. The underestimation is larger when the s
tem size decreases. The root mean square method is the
sensitive to this size effect.

It is likely that both biases exist in this study. In order
evaluate simultanously the influence of both flaws on lo
roughness exponents, synthetic profiles are simulated,
tered, and analyzed. Self-affine profiles are simulated
merically with aVoss construction@29# for four values of the
self-affine exponent: 0.80, 0.85, 0.90, and 0.95. For e
exponent, 100 independent profiles are generated. The
zontal step between two consecutive points isSO
56.25 mm corresponding to the lower cutoff, i.e., the me
thickness of cell walls. Magnification of self-affine profile
corresponds to that measured on experimental profiles.
filter is an under sampling with a sphere of radiusR
525 mm ~i.e., the size of the experimental needle! every
four steps (S54SO525 mm). The stepScorresponds to the
experimental stepDx. Output exponents are obtained wi
the four methods~rms, max-min, power spectrum, and wav
let analysis! and are given in Table II for different system
sizes. From Table II, the corrected values of the experime
z loc are estimated, and given in brackets in Table I. Avera
of the corrected values ofz loc obtained from the different
methods gives the local roughness exponents: 0.8760.07 for
spruce and 0.8860.07 for pine. Results are consistent wi
those obtained for brittle materials, wherez loc'0.85@6,4,11#
and support the conjecture of a universal local roughn
exponent.

Our results are different from those obtained by Eng”y
et al. @30#, who studied the roughness of brittle fractures f
different woods. The authors found a local roughness ex
nentz loc50.68 which is characteristic of a two-dimension
fracture. Several reasons might explain this difference. F
the direction of propagation crack was perpendicular to



synthetic
The

0.95

0.84

0.96

0.91

0.99

PRE 58 7003ANOMALOUS ROUGHENING OF WOOD FRACTURED SURFACES
TABLE II. Tests of root mean square, power spectrum, max-min difference , and wavelet analyses on undersampled and filtered
self-affine profiles which model profiler recording~see text for details!. Four system sizes, in terms of number of points are considered.
accuracy of the exponents presented in this table is around 8%.

System size 256 pts 512 pts 1024 pts 2048 pts

self-afine exponent 0.80 0.85 0.90 0.95 0.80 0.85 0.90 0.95 0.80 0.85 0.90 0.95 0.80 0.85 0.90

rms 0.72 0.77 0.80 0.82 0.74 0.78 0.81 0.83 0.75 0.79 0.82 0.84 0.75 0.79 0.82

power spectrum 0.82 0.84 0.87 0.89 0.82 0.85 0.88 0.90 0.83 0.87 0.89 0.91 0.83 0.88 0.93

max-min 0.81 0.84 0.86 0.89 0.83 0.85 0.88 0.90 0.84 0.86 0.89 0.90 0.84 0.86 0.89

wavelet analysis 0.87 0.92 0.97 1.02 0.87 0.91 0.96 1.00 0.85 0.90 0.94 0.99 0.84 0.89 0.94
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bers, while in our setup the propagation is parallel to fibe
Second, the moisture content of tested specimens was ar
4%, which is significantly lower than that measured in o
study~12%!. A low moisture content induces microcrackin
in the radial-longitudinal and tangential-longitudinal plan
of wood due to drying shrinkage. This mechanism of mic
cracking does not appear in mode I fracture. Microcra
induce preferential paths for the macrocrack which mod
the scaling properties of fracture surfaces. Third, the exp
mental procedure was strongly different in the study
Engo”y et al. since fracture propagation was unstable, co
trary to the stable propagation in the present work.

B. Global roughness and dynamical exponents

As discussed above, the existence of an exponentb* Þ0
~see Fig. 2! indicates that an anomalous roughening is tak
place. To obtain an accurate description of the anoma
scaling, we follow Refs.@19,24#, and define the scaling func
tion g(u) asg( l /t1/z)5w( l ,t)/ l z. From Eq.~3!, g(u) is ex-
pected to scale like

g~u!;H u2~z2z loc! if u!1

u2z if u@1.
~8!

The scaling functiong is computed by data collapses fro
each profile of a complete crack map~i.e., the set of profiles
that describe a single fracture!. In Figs. 5 and 6 we presen
the data collapses ofg(u) for all the maps obtained for th
three specimen sizes (L560, 30, and 11.25 mm! of both
spruce and pine.

Figure 5~a! is considered a good example of these d
collapses. The quality of the collapse is used for a deter
nation of the dynamical exponentz. The global exponentz is
obtained from the fit of the scaling function. The time ev
lution of the height fluctuations at small scales is shown
the nonconstant behavior foru!1. This regime is fitted by a
power lawg(u)}u20.76. Using our previous estimate of th
local roughness exponentz loc50.84, we obtain the magni
tude of the global roughness exponentz51.60. In the par-
ticular case of samples60-1 shown in Fig. 5~a!, the best
collapse is observed for the dynamical exponentz55.9. Note
that estimates of the exponentsz loc50.84, z51.60, andz
55.90 are very consistent with fits obtained from Fig.
b* 50.13 andz/z50.27 for this sample.
.
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Data collapses of all maps are presented in Figs. 5 an
and are in good agreement with a scaling function like E
~8!. For both wood species, the global roughness expon
and dynamical exponent are reported in Table I. As show
Table I, global roughness exponentsz are independent of the
system size. Average values arez51.6060.10 for spruce
andz51.3560.10 for pine.

IV. IMPLICATIONS OF ANOMALOUS SCALING

According to Eq.~3!, the roughness is expected to sat
rate only at timest@Lz, i.e., when the correlation lengt
j(t);t1/z has reached the boundary lengthjmax}L. In this
regime the roughness magnitude scales with the system

FIG. 5. Data collapses for spruce specimens data in three di
ent system sizes. Panels~a!, ~b!, and~c! display the data collapse
of s60-1, s30-1, ands11-1 specimens which have, respective
sizesL560, 30, and 11.25 mm. The nonconstant behavior~i.e.,
nonzero slope! at small values ofl /t1/z displays the dependence o
time of the roughness magnitude. Scalings are in good agreem
with the scaling function@Eq. ~8!#.
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for any window length even much smaller than the syst
sizeL:

w~ l ,t@Lz!; l z locLz2z loc. ~9!

We checked the linear relationship betweenjmax and the
system sizeL by measuringjmax. From the evolution of the
roughnessw( l ,t) with time ~see Fig. 2!, the saturation time
tsat is estimated. The correlation lengthjmax is obtained using
the relationjmax}tsat

1/z . Values ofjmax for the different maps
are reported in Table I. In Fig. 7,jmax is plotted versusL for
both woods. A linear relationship betweenjmax and the sys-
tem sizeL exists except in the case of spruce for the larg
sample size, where the saturation regime is not cle
reached.

In Fig. 8, the ratiô w( l ,t@jmax
z )lzloc& l is plotted versusL

for profiles at timest>(jmax)
z for pine specimens. A powe

law Lz2z loc, with exponents determined previouslyz51.35
and z loc50.80, is very consistent with data. It confirms th
increase of the roughness magnitude with the system siL
even for windows smaller than the system size. In Fig.
^w( l !jmax,t)/(l

zlocjmax
z2zloc)& l versusL is also plotted~filled

symbols!, which is expected to be constant.

V. CONCLUSIONS

In this study we have shown that fracture surfaces of
anisotropic material like wood display an anomalous d
namic scaling of the crack roughness. From different sp
men sizes, we have studied the size effects on rough
exponents. It appears that the global roughness expone
independent of the system size and different for both stud

FIG. 6. Data collapses for pine specimens of three differ
system sizes. Panels~a!, ~b!, and ~c! display the data collapses o
p60-1, p30-2, andp11-2 specimens having, respectively, sizesL
560, 30, and 11.25 mm.
t
ly

,

n
-
i-
ss

t is
d

woods. We have obtainedz51.6060.10 for spruce andz
51.3560.10 for pine. The local roughness exponentz loc
shows a deviation according to the system size. However
argue that this deviation is due to a biased estimate resu
from two independent effects: the number of sampled po
and the local filtering resulting from the needle shape dur
the roughness measurement. Errors due to these biases
to be considered, and the corrected values of the local rou
ness exponents are 0.8760.07 for spruce and 0.8860.07 for
pine. These results support the conjecture of a universal l
roughness exponent for brittle materials. Moreover, we h
shown that there exists a linear relationship between the
tem size and the maximum correlation lengthjmax. This re-
lation induces a system size dependence in the rough
magnitude at saturation.

t

FIG. 7. Maximum self-affine correlation lengthsjmax vs the sys-
tem sizeL for spruce~circle! and pine~square! specimens. Both
spruce and pine show a linear relationship~dashed line! between
jmax and L. The determination ofjmax in the case of spruce an
large system size is underestimated owing to the brief duration
the roughness map. The saturation transition was not clearly obs
able for this sample.

FIG. 8. Size effect on the amplitude of the roughness over p
files at saturation, i.e., at timest>jmax

z , for pine specimens. Uppe
symbols correspond tôw( l !jmax,t)/lzloc& l vs L: Circles correspond
to the specimen ofL560 mm, squares toL530 mm, diamonds to
L522.5 mm, and triangles toL511.25 mm. Filled symbols are
obtained for̂ w( l !jmax,t)/(lzlocjmax

z2zloc)& l vs L.
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Our results can be compared with a recent experimen
granite @19# in which the exponentsz loc50.79 andz51.2
were obtained. We suggest that the global roughness e
nent, which seems to be dependent on material, may b
good candidate as an index for characterizing material p
erties. Conversely, the local roughness exponent does
seem to change for different materials, and might beuniver-
sal. To our knowledge, the existing models of cracks a
based on the assumption that cracks are truly self-affine,
z5z loc . It is of major interest to find theoretical models
y

e

l,

s

hy
in

o-
a

p-
ot

e
e.,

crack interfaces that could incorporate anomalous kin
roughening in a simple way.
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